Stability preserving maps for finite-time convergence: Super-twisting sliding-mode algorithm
نویسندگان
چکیده
The super-twisting algorithm (STA) has become the prototype of second-order sliding mode algorithm. It achieves finite time convergence by means of a continuous action, without using information about derivatives of the sliding constraint. Thus, chattering associated to traditional sliding-mode observers and controllers is reduced. The stability and finite-time convergence analysis have been jointly addressed from different points of view, most of them based on the use of scaling symmetries (homogeneity), or non-smooth Lyapunov functions. Departing from these approaches, in this contribution we decouple the stability analysis problem from that of finite-time convergence. A nonlinear change of coordinates and a time-scaling are used. In the new coordinates and time–space, the transformed system is stabilized using any appropriate standard design method. Conditions under which the combination of the nonlinear coordinates transformation and the time-scaling is a stability preserving map are given. Provided convergence in the transformed space is faster thanO(1/τ)—where τ is the transformed time— convergence of the original system takes place in finite-time. The method is illustrated by designing a generalized super-twisting observer able to cope with a broad class of perturbations. © 2012 Elsevier Ltd. All rights reserved.
منابع مشابه
Second Order Sliding Mode Control With Finite Time Convergence
In this paper, a new smooth second order sliding mode control is proposed. This algorithm is a modified form of Super Twisting algorithm. The Super Twisting guarantees the asymptotic stability, but the finite time stability of proposed method is proved with introducing a new particular Lyapunov function. The Proposed algorithm which is able to control nonlinear systems with matched structured u...
متن کاملSecond Order Sliding Mode Control With Finite Time Convergence
In this paper, a new smooth second order sliding mode control is proposed. This algorithm is a modified form of Super Twisting algorithm. The Super Twisting guarantees the asymptotic stability, but the finite time stability of proposed method is proved with introducing a new particular Lyapunov function. The Proposed algorithm which is able to control nonlinear systems with matched structured u...
متن کاملDesign and analysis of adaptive Super-Twisting sliding mode control for a microgyroscope
This paper proposes a novel adaptive Super-Twisting sliding mode control for a microgyroscope under unknown model uncertainties and external disturbances. In order to improve the convergence rate of reaching the sliding surface and the accuracy of regulating and trajectory tracking, a high order Super-Twisting sliding mode control strategy is employed, which not only can combine the advantages ...
متن کاملSecond-Order Sliding Mode Controllers for Spacecraft Relative Translation
This paper studies robust control schemes for two spacecraft in formation subjected to external disturbances in the space environment. Two sliding mode control schemes are designed to generate control with a finite time convergence property. The super twisting and adaptive super twisting control algorithms are developed for the two-spacecraft formation flying system. The second method of Lyapun...
متن کاملFinite time convergence analysis for “Twisting” controller via a strict Lyapunov function
Resumen—A second order sliding mode controller, the so-called “Twisting” algorithm is under study. A non-smooth strict Lyapunov function is proposed, so global finite time stability for this algorithm can be proved, even in the case when it is affected by bounded external perturbations. The strict Lyapunov function gives the possibility to estimate an upper bound for the time convergence of the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Automatica
دوره 49 شماره
صفحات -
تاریخ انتشار 2013